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ABSTRACT 
 

Interleukin (IL)-1 Regulates Ozone-induced Nerve Growth Factor (NGF) and Substance P 
(SP) Release in Bronchoalveolar Lavage Fluid (BALF) in Mice 

 
Joshua S. Barker 

 
 

Previous studies show that both IL-1 and NGF increase synthesis of SP in airway neurons 

after either direct application or ozone exposure.  We hypothesize that NGF mediates ozone-

induced IL-1 effects on SP, similar to the pathway described for sympathetic neurons in culture.  

The current study specifically focuses on the effect of ozone on IL-1, NGF, and SP levels in 

mice BALF and if these mediators can be linked in an inflammatory-neuronal cascade in vivo. 

The experiments demonstrate in vivo ozone exposure induces an increase of all three proteins in 

mouse BALF and that both ozone-induced increases in NGF and SP are mediated by the 

inflammatory cytokine IL-1.  Even though these findings did not definitely link NGF as the 

mediator of IL-1 effects on SP, it did not conclusively eliminate this possibility. These data did 

indicate that IL-1 is an early mediator of ozone-induced increase in NGF and SP release in mice 

in vivo.  
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I.  INTRODUCTION 

 Although it has been shown in numerous animal models (i.e., mice, rats, guinea pigs and 

humans) that irritant exposure, specifically ozone, can induce airway inflammation and airway 

hyperresponsiveness (AHR), the causative mechanism(s) has not been definitely determined.  

Even so, each of the chemical mediators IL-1, NGF, and SP have been shown to be increased 

after ozone exposure and have also been shown to separately participate in the resulting ozone-

induced AHR.   

Exogenous application or increases of any one of these three proteins have been shown to 

induce AHR by themselves.  These mediators have also been shown to exert effects on each 

other in the airways.  For example, the inflammatory cytokine interleukin 1 (IL-1) induces the 

expression of the neurotrophin Nerve Growth Factor (NGF) and the tachykinin Substance P (SP).  

Furthermore, exogenous application of NGF increases the synthesis of SP in normal SP-

containing neurons and induces SP production in neurons normally devoid of SP.  These 

correlations suggest a possible inflammatory-neuronal cascade that would account for the 

translation of the ozone insult into the ensuing AHR. 

Even though there has been extensive research into the specific down-stream effects of 

ozone exposure and its mediators including IL-1, NGF, and SP, there has not been an in vivo 

study investigating the possible linking of these mediators. Given the significant role each 

mediator serves in ozone-induced AHR, this is an important question. The present study attempts 

to elucidate the in vivo causative relationships of these chemical intermediaries.  The results 

demonstrate that the inflammatory cytokine IL-1 mediates the majority of the ozone-induced 

increases of NGF and SP.  The findings suggest that NGF contributes to the ozone-induced 
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increase in SP, though this needs further investigation.  Overall, the findings support the 

hypothesis that ozone initiates an inflammatory-neuronal cascade starting with IL-1 production 

which triggers NGF release leading to increased SP production.   
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II. BACKGROUND 

A.  Ozone (O3

 As the primary constituent of photochemical smog, ground level ozone is a major urban 

pollutant and is regulated by the Environmental Protection Agency through the Clean Air Act 

(United States Environmental Protection Agency, 1990).  It is not directly emitted but is formed 

as a byproduct of fossil fuel combustion from sources such as automobiles, power plants, and the 

manufacturing industry.  The combustion of hydrocarbons releases volatile organic compounds 

and nitrogen oxides that undergo a photochemical reaction resulting in the ground level matrix of 

particulate matter and ozone – photochemical smog.  Such air pollution is present in virtually all 

cities but extremely prevalent in very sunny, warm, dry areas with a large number of 

automobiles, especially where the warm upper air prevents vertical circulation (Baird, 1999).  

Examples of these ozone-prone areas in the United States are Houston, Los Angeles, 

Sacramento, San Francisco, and Chicago (United States Environmental Protection Agency, 

2006).   

) 

Ozone functions as an oxidizing agent and causes clinical symptoms in humans including 

shortness of breath, chest pain, wheezing, coughing, and the exacerbation of asthma (Menzel, 

1984).  There is a close correlation between high ozone concentrations and increased hospital 

visits resulting from respiratory illnesses, specifically asthma (Burnett et al., 1994; Thurston et 

al., 1992; Romieu et al., 1995; Yang et al., 2003).  Effects from exposure to ozone are both 

transient and prolonged.  A recent New England Journal of Medicine article demonstrates a 

significant increase in respiratory related death rates with increased long-term ozone 

concentration exposure.  The study shows the risk of a respiratory related death is more than 
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three times as great in the highest ozone concentration metropolitan areas as compared to those 

with the lowest ozone concentration (Jerret et al., 2009). 

The physiological effects of ozone exposure have been shown in numerous animal 

models including mice (Mustafa et al., 1982), rats (Evans et al., 1988), guinea pigs (Gordon et 

al., 1984), dogs (Matsui et al., 1991), and in human subjects (Horstman et al., 1990).  

Pathological changes from ozone exposure include damage to the airway epithelium, pulmonary 

inflammation and airway hyperresponsiveness (Hazbun et al., 1993; Leikauf et al., 1995; Wu and 

Lee, 1999; Beckett et al., 1991; Sterner-Kock et al., 2000).  The resultant inflammatory response 

is characterized by neutrophil influx into the trachea and bronchoalveolar space (which is 

different than eosinophillic influx in allergen induced inflammation) and increased serum protein 

levels in lavage fluid (Pino et al., 1992; Aris et al., 1993; Basha et al., 1994; Devlin et al., 1996; 

Krishna et al., 1998; DeLorme et al., 2002).  There is also increased smooth muscle response to 

broncho-constricting agonists, the characteristic feature of airway hyperresponsiveness (AHR) 

(Hiltermann et al., 1995).  The definitive causal relationship between the pulmonary 

inflammation and the resulting airway hyperresponsiveness is unclear, however much is known 

about the downstream effects of ozone exposure, including the induction and release of many 

inflammatory mediators, including cytokines, chemokines, neurotrophins, as well as the release 

of tachykinins, all of which could produce airway inflammation and AHR. 

B.  Interleukin-1 (IL-1) 

One possible mediator of ozone induced airway hyperresponsiveness and inflammation is 

the pro-inflammatory cytokine IL-1.  Even though the IL-1 family was originally discovered 

over fifty years ago, it was not discovered until 1985 that IL-1 consisted of two separate entities 
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– IL-1α and IL-1β (March et al., 1985).    IL-1α is biologically active as both the precursor pro-

IL-1α form and as the mature protein (Huising et al., 2004) and is primarily an intracellular 

mediator (Allan et al., 2005).  IL-1β is inactive in its precursor form and is secreted by an 

undetermined pathway (Thornberry et al., 1992).  Even though both are encoded by separate 

genes, they share high sequence homology and bind to the membrane bound type I IL-1 receptor 

(IL-1R1) (Sims et al., 1988).  The effects of IL-1α and IL-1β can be blocked by a naturally 

occurring competitive IL-1R antagonist (IL-1Ra) produced and secreted by the same cells that 

produce IL-1.  The IL-1Ra binds to IL-1R1 but does not initiate any signal transduction 

(Hannum et al., 1990). 

IL-1 has been shown to be a major component in irritant induced AHR (Barnes et al., 

1998; Park et al., 2004; Johnson et al., 2005) and can induce AHR alone whether from injection 

in guinea pigs and rats or by in vitro application on human isolated bronchi (Frossard et al., 

2005).  IL-1 has also been shown to increase other possible mediators of AHR, including nerve 

growth factor (NGF) and substance P (SP).  IL-1 has been shown to increases the synthesis and 

release of NGF from airway structural cells including cultured human airway epithelial cells 

(Pons, et al 2001; Fox et al., 2001), bronchial smooth muscle cells (Freund et al., 2002; Kemi et 

al., 2006), and pulmonary fibroblasts (Olgart and Frossard, 2001).  Conversely, in cultured 

human pulmonary fibroblasts (Olgart and Frossard, 2001) and epithelial cells (Pons, et al., 2001) 

IL-1 mediated increases in NGF can be reduced by application of anti-inflammatory drugs, such 

as corticosteroids.  It has been suggested that IL-1 induction of NGF transcription could be 

caused by the activation of inflammatory transcriptional factors, like activated protein-1 (AP-1) 

(Freund et al., 2002), since the AP-1 responsive element is a component of the NGF gene 

promoter (Lee et al., 1987; Cartwright et al., 1992).  Further proof that the AHR effect of IL-1β 
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may be in part mediated by NGF is the evidence that pre-treatment with an NGF blocking 

antibody can abolish the IL-1 β-induced AHR in isolated human bronchial smooth muscle strips 

(Frossard et al., 2005). 

Specific effects of IL-1β on airway neurons have also been reported.  In ferrets, 

exogenous IL-1β increases the number of SP-positive neurons of airway ganglia and SP 

innervation of airway smooth muscle as well as inducing SP production in intrinsic airway 

neurons which do not normally express it (Wu et al., 2002). In addition, application of IL-1 Ra 

diminished ozone-enhanced SP levels in the airway and decreases AHR in ferrets (Wu et al., 

2008).  These studies demonstrate that IL-1 modulates SP expression in airway neurons and 

participates in ozone-induced AHR.  

C.  Nerve Growth Factor (NGF) 

NGF was originally discovered by Rita Levi-Montalcini and co-workers in the 1960’s as 

a sarcoma-derived substance that stimulated the outgrowth of dorsal root ganglion neurons and is 

now recognized to be a survival and differentiating factor for neural crest derived sensory 

neurons, as well as, sympathetic and basal forebrain cholinergic neurons (Levi-Montalcini and 

Angeletti, 1968; Sofroniew et al, 2001).   Because of this, it is included in the neurotrophin 

family of peptides, along with brain-derived neurotrophic factor (BDNF), and neurotrophins 

(NT) -3, -4, -5, and -6 (Frossard, et al 2004), all of which have been established as playing 

critical roles in vertebrate nervous and cardiovascular development (Tessarollo, 1998; Huang and 

Reichardt, 2001; Chao, 2003).   

NGF is composed of an α, β, and γ subunit with the γ subunit being responsible for its 

biological activity (Bax, et al., 1993).  The actions of NGF are dictated by its binding to one of 
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two cell surface receptors: (1) the high-affinity tropomyosin-receptor tyrosine kinase A (TrkA), 

or (2) the low affinity receptor p75, which also interacts with BDNF, NT-3,-4, and -5 (Lindsay 

and Harmar, 1989; Hempstead, 2002).  Of the two receptors, only TrkA uses tyrosine kinase as 

part of its signal transduction.  Among the group of neurotrophins NGF has the highest binding 

affinity for the TrkA receptor (Ibáñez et al., 1998).  Binding of NGF to the TrkA receptor 

induces its homodimerisation and autophosphorylation, activating many different cell-signaling 

pathways (Kaplan et al, 1991).  The end result is dependent on the specific cell type and 

subsequent pathways activated and can result in cell proliferation, differentiation, and survival, 

or apoptosis inhibition (Frossard, et al, 2004).  More specifically, NGF has been shown to 

regulate neuronal phenotypic traits such as stimulus responsiveness (Lewin and Mendell, 1993), 

response to neuronal injury (Olson et al., 1994) and neuropeptide expression (Kessler and Black, 

1980; Otten et al., 1980; Hunter et al., 2000). 

Recently, NGF has been shown to not only be a mediator of inflammation resulting in 

AHR in various in vitro and in vivo animal models (Woolf, et al, 1994; Braun et al., 1998; 

Nassenstein, et al, 2004; Bachar, et al, 2004; de Vries, et al 2006) but can specifically cause 

AHR apparently through direct action on airway smooth muscle (Friberg et al, 2001; de Vries et 

al., 1999).  NGF is produced and released by various inflammatory and structural cells in the 

airways, including mast cells, eosinophils, neutrophils, monocytes/macrophages, bronchial 

epithelial and smooth muscle cells, and pulmonary fibroblasts (for review see Frossard et al, 

2004).  Serum NGF levels are increased in patients with asthma compared to those non-

asthmatics (Bonini et al., 1996) and NGF is elevated in bronchoalveolar lavage fluid of 

asthmatics (Olgart Höglund et al., 2002).  Further evidence of NGF’s role in AHR has been 

shown by AHR being induced by tissue specific over-expression of NGF in the airways of 
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transgenic mice (Hoyle et al., 1998; Päth et al., 2002), and by pre-treatment with anti-NGF 

antibodies in mice and guinea pigs to reduce allergen induced AHR (Braun et al., 1998; de Vries 

et al., 2002). 

NGF increases the intracellular level and release of SP from a wide range of neurons 

(Adler et al., 1984; Lindsay and Harmar, 1989; Vedder et al., 1993; Cho et al., 1996; Hoyle, 

2003; Malcangio et al., 2000; Skoff et al., 2003;) and causes the phenotypic switch to SP 

production in airway sensory neurons derived from the nodose ganglia which do not typically 

express SP (Hunter et al., 2000).   

D.  Substance P (SP) 

The final link between ozone exposure and the subsequent inflammation and AHR could 

be SP.  SP is a member of the tachykinin family and was first discovered over 80 years ago (von 

Euler and Gaddum, 1931).  It primarily binds with high affinity to the neurokinin 1 (NK1) 

receptor but does also bind, with low affinity, to the NK2 and NK3 receptors (Maggi et al., 1993; 

Regoli et al., 1994; Severini et al., 2002).  The NK1

With regard to airway innervation, SP is synthesized by translation of the 

preprotachykinin mRNA in nerve cell bodies of sensory neurons located in the nodose and 

jugular ganglia and, in response to exposure to ozone and other irritants, released from nerve 

terminals located in the airway epithelium, smooth muscle, and mucosal blood vessels (Lee et 

al., 1979; Koto et al., 1995; Joad et al., 1996).  SP release has also been documented from 

 receptor is a seven-transmembrane G-protein 

coupled receptor and activates a phosphatidylinositol-calcium second messenger system.  It is 

important to realize that release of tachykinins from sensory nerves in the airways requires a 

stimulus of chemical origin.   
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intrinsic airway neurons (Wu et al., 2001 and 2003) and has been shown to be a central mediator 

of ozone-induced AHR (Lee et al., 1979; Koto et al., 1995; Joad et al., 1996; Wu et al., 1997; 

Graham et al., 2001).  SP nerves are relatively prevalent in the airways as evident by 

radioimmunoassay and immunohistochemistry showing SP nerves beneath and within the 

epithelium, around blood vessels, and submucosal glands and within the bronchial smooth 

muscle layer (Lundberg et al., 1984; Luts et al., 1993).  The NK1

Blocking the action of SP reverses airway hyperreactivity.  Aerosolized neutral 

endopeptidase, the enzyme responsible for neutralizing released SP, diminishes ozone-induced 

AHR (Nadel, 1991; Murlas et al., 1992).  Depletion of SP by capsaicin treatment prior to ozone 

exposure prevents AHR, by decreasing the bronchial influx of neutrophils and subsequent 

bronchial edema (Tepper et al., 1993; Kaneko et al., 1994; Koto, et al, 1995).  Furthermore, it 

has been shown in vivo that NK

 receptor is expressed in the 

airway epithelium, the submucosa, endothelium of blood vessels, goblet cells, surfaces of 

inflammatory cells (Chu et al., 2000) and in airway smooth muscle cells (Maghni et al., 2003).  

Ultimately, SP induces AHR by increasing the cholinergic sensitivity of airway smooth muscle 

(Tanaka and Grunstein, 1984) and has been shown to facilitate acetylcholine release from post-

ganglionic nerves in many species including guinea pigs, rabbits, mouse and humans (Joos et al., 

1988; Hall et al., 1989; Black et al., 1990; Colasurdo et al., 1995; Tournoy et al., 2003).   

1 receptor antagonist attenuates both the ozone-enhanced airway 

responses in ferret trachea (Wu et al., 2001 and 2003) and the NGF-induced AHR in guinea pigs 

(de Vries, et al., 1999).  This is important in alluding to NGF/TrkA-mediating SP levels in the 

airways.  Additional proof pointing to this possible cascade is provided by a recent study, 

showing an increase in SP as well as trkA in large-diameter neurons in the nodose and jugular 



10 
 

ganglia after injection of NGF in the lower airways of mice, suggesting trkA mediates SP 

induction of neurogenic airway inflammation (Dinh et al., 2004) 

E.  Statement of Problem 

The chemical mediators IL-1, NGF, and SP are increased after ozone exposure and have 

been shown to participate in the resulting AHR.  In addition, it has also been demonstrated that 

SP can be induced by both exogenous application of the pro-inflammatory cytokine IL-1 or the 

neurotrophin NGF and that NGF itself can be induced by exogenous application of IL-1.  These 

findings suggest a possible inflammatory-neuronal cascade that would translate the ozone insult 

to the ensuing airway pathologies. 

F.  Hypothesis 

The hypothesis that will be studied is that ozone exposure induces airway 

hyperresponsiveness (AHR) by increasing the level of interleukin-1 (IL-1), which in turn 

increases the release of nerve growth factor (NGF), which ultimately enhances substance P (SP) 

release (Figure 1). 
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Figure 1.  A possible illustration of the proposed inflammatory-neuronal cascade for airway hyper-
responsiveness induced by ozone exposure and investigated by this project.  Exposure to ozone injures 
bronchial epithelial cells (1.), causing them to release IL-1 (2.).  This in turn, allows IL-1 to bind to its 
receptor, IL-1R, on the surface of bronchial (3a) and vascular (3b) epithelial cells.  The binding of IL-1 to 
the IL-1R of the bronchial epithelial cells releases NGF (4.), while the binding of IL-1 to IL-1R on the 
vascular endothelial cells allows for the passage of polymorhphonuclear cells (PMN) to pass in to the 
bronchial space, bind IL-1 with their own IL-1R and release NGF (4.).  NGF from either/both sources 
binds to trkA receptors on substance P producing neurons, increasing the production and release of 
substance P (5.). 
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G.  Rationale 

The rationale of these experiments was two-fold:  

(1) Test in vivo the above proposed mechanism to determine if an inflammatory-neuron 

cascade pathway involving IL-1, NGF, and SP is responsible for irritant induced airway 

hyper-responsiveness 

(2) Establish in a murine model the responses we have already characterized using an in vivo 

ferret model.  The murine model would provide more cellular manipulations and 

investigative techniques (i.e., transgenic mice models, small interfering-RNA) for future 

studies. 

 

H.  Specific Aims and Expected Results 

1.  Determine the effect of ozone on the concentrations of IL-1, NGF, and SP in BALF from an 

in vivo murine exposure model. 

2.  Determine if IL-1Ra is able to diminish the expected ozone-induced increases of NGF and SP 

in mouse BALF. 

3.  Determine if either a tyrosine kinase inhibitor K252a or an anti-NGF antibody will diminish 

the expected ozone-induced increase of SP in mouse BALF. 
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The following table is a summary of our experimental design and the expected results: 

Experimental 

Design 

Proposed Mechanism 

      Ozone              IL-1             NGF               SP 

 

Ozone +    

Expected 

Results 

IL-1 NA Added   

IL-1Ra + Ozone +    

K252a + Ozone +    

Anti-NGF + 
Ozone  +    

      

 
 
III. MATERIALS AND METHODS 

A.  Animal use and anesthetics 

 Adult (8 weeks old) male ICR mice (Harlan Laboratories, Inc) were housed four per 

cage, under controlled light-cycle (12 hr. light/12 hr. dark) and temperature (22-24ºC) 

conditions, with access to food and water ad libitum in the West Virginia University animal 

facility.  Mice were anesthetized with a ketamine/xylazine mixture in a single intraperitoneal 

injection before intratracheal (i.t.) instillations.  Animals were sacrificed 24 hours after ozone/air 

exposure or i.t. instillations with a lethal dose of sodium pentobarbital (200mg/kg).  All 

procedures were approved through ACUC review under Protocol #06-0501. 
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B.  I.T. instillation of IL-1 or IL-1 receptor antagonist (IL-1Ra) 

 Mice were anesthetized with a dosage of ketamine/xylazine (25mg/kg and 2mg/kg, 

respectively) mixture in a single i.p. injection.  An 21-guage steel tube, 4.7 cm in length 

connected to a 1 ml tuberculin syringe filled with either 20µl of IL-1β (200µl/ml; Santa Cruz 

Biotechnology, Inc.), IL-1Ra (200ng/ml; Amgen, Inc.), or saline.  The tube was inserted through 

the oral cavity and pharynx into the trachea and the solution was instilled into the trachea.  One 

hour after the last IL-1Ra or saline instillation, mice were exposed in vivo to 2ppm ozone for 

three hours.  The mice were allowed to recover from the anesthetic and returned to the animal 

facility until the following day. 

C.  I.T. instillation of the tyrosine kinase inhibitor K252a or anti-NGF antibody 

 Mice were anesthetized and underwent identical ozone exposure as above.  Mice received 

a 20µl intratracheal (i.t.) instillation of anti-NGF antibody (200µg/ml; Santa Cruz 

Biotechnology, Inc.) or saline one, two, or four hours before ozone exposure.  The tyrosine 

inhibitor K252a (100µg/ml; Alexis Biochemicals; Sand Diego, CA) was administered in two 

different ways.  Initially, the K252a was dissolved in 100% dimethyl sulfoxide (DMSO) and 

administered to mice by i.t. instillation two or four hours prior to ozone exposure. For a second 

set of experiments, the inhibitor was dissolved in a 10% DMSO in saline solution and then 

administered by i.t. instillation to the mice at four hours prior to ozone exposure.  The last 

experimental design utilized i.t. instillation of the K252a DMSO/PBS solution twelve and three 

hours prior to ozone exposure and then immediately after the exposure; a total of three separate 

i.t. instillations of K252a were given to each mouse. 

 



15 
 

D.  In vivo ozone exposure 

 All in vivo ozone exposures were done at 2 ppm in a 12x12 inch stainless steel and glass 

chamber for three hours.  Ozone was produced by passing hospital-grade air through a drying 

and high-efficiency particle (HEPA) filter and then through an ultraviolet light source.  The 

ozone concentration in the chamber was measured by chemiluminescence with a calibrated 

ozone analyzer (OA 350-2R model; Forney Corporation; Carrolton, TX).  Air control animals 

were exposed to filtered air using procedures identical to those above, except ozone was not 

delivered to the mixing chamber.  The ozone exposure apparatus has been described in detail 

elsewhere (Wu et al., 2002). 

E.  Bronchoalveolar lavage fluid (BALF) collection 

 Twenty-four hours after ozone/air exposure or the final i.t. instillation, mice were 

anesthetized with a single dose of sodium pentobarbital injection (i.p).  The lungs were lavaged 

with 3ml PBS (1.5ml, twice) through a tracheal cannula and the BALF was placed into 15ml 

conical tubes with 30µl of the proteinase inhibitor phosphoramidon (1x10-4

F.  IL-1 Enzyme-Linked Immunosorbent Assay 

 µM) to inhibit 

neutral endopeptidases which degrade SP.  The collected BAL fluid was centrifuged at 1,500 

rpm for 10-12 min. at 15ºC.  The supernatant was aliquoted and frozen at -80ºC for subsequent 

assays. 

 The BALF supernatant samples (initial 3ml) were frozen at -80ºC.  The concentration of 

IL-1 (31-100pg/ml) in each sample was assayed using the mouse IL-1β/IL-1F2 DuoSet® ELISA 

Development System (R&D Systems, Inc; Minneapolis, MN) according to the manufacturer’s 

instructions.  IL-1 was detected using an anti-body sandwich format in 96-well plates (Figure 2).  
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Each well was initially coated with 100µl of rat anti-mouse IL-1β and incubated overnight 

followed by 1 hr. incubation with blocking buffer (300µl/well) to prevent non-specific binding.  

Either 100µl of lavage supernatant or 100µl of NGF standard (31-1000 pg/ml) was added to each 

well.  The plate was incubated for 2 hr. followed by 2 hr. incubation with biotinylated goat anti-

mouse IL-1β (100µl/well).  For color development, streptavidin conjugated to horseradish 

peroxidase was added to each well (100µl) followed by a TMB solution, which reacts with the 

peroxidase-labeled conjugates to develop a blue color.  The reaction was stopped after 10 min. 

with 2N sulfuric acid (50µl/well) causing the blue to change to yellow upon acidification.  The 

absorbance of each well was measured at 450nm, with a wavelength correction at 540nm, on a 

Spectra Max 340pc plate reader (Molecular Devices, Sunnyvale, CA).  The concentration of IL-1 

in each lavage sample was extracted from an IL-1 standard curve.  All samples were run in 

triplicate, and as a negative control, a PBS sample was run with each assay. 

G.  NGF Enzyme-Linked Immunosorbent Assay 

 The BALF supernatant samples (initial 3ml) were frozen at -80ºC.  The concentration of 

NGF (7.8-1000 pg/ml) in each sample was assayed using the NGF Emax ImmunoAssay System 

(Promega, Madison, WI) according to the manufacturer’s instructions.  NGF was detected using 

an antibody sandwich format in 96 well plates (Figure 2).  Each well was initially coated with 

100µl of anti-NGF pAb and incubated overnight followed by 1 hr. incubation with blocking 

buffer (200µl/well) to prevent non-specific binding.  Either 100µl of lavage supernatant or 100µl 

of NGF standard (7.8-1000 pg/ml) was added to each well.  The plate was incubated for 6 hr. 

followed by an overnight incubation with anti-NGF mAb (100µl/well).  For color development 

an anti-rat IgG, horseradish peroxidase conjugate antibody was added to each well (100µl) 

followed by a TMB solution, which reacts with the peroxidase-labeled conjugates to develop a 
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blue color.  The reaction was stopped after 10 min. with 1N hydrochloric acid (100µl/well) 

causing the blue to change to yellow upon acidification.  The absorbance of each well was 

measured at 450nm on a Spectra Max 340pc plate reader (Molecular Devices, Sunnyvale, CA).  

The concentration of NGF in each lavage sample was extracted from an NGF standard curve.  

All samples were run in triplicate, and as a negative control, a PBS sample was run with each 

assay. 

 

Figure 2. Illustration of a sandwich ELISA.  (1) ELISA plate is coated with capture antibody. 
(2) Sample is added and the respective antigen present binds to capture antibody. (3) Biotin-
conjugated secondary detection antibody is added and binds to the antigen captured by the first 
antibody. (4) Streptavidin-HRP is added and binds to the biotin conjugated detection antibody. 
(5) Colored product is formed in proportion to the amount of antigen is present in the sample.  
The reaction is stopped by acid addition and absorbance measured at 450 nm. 

 

H.  SP Enzyme-Linked Immunosorbent Assay 

 The BALF supernatant samples (initial 3ml) were frozen at -80ºC.  The concentration of 

SP (39-2500 pg/ml) in each sample was assayed using the Parameter Substance P Assay (R&D 

Systems, Inc; Minneapolis, MN) according to the manufacturer’s instructions.  SP was detected 

using a competitive binding technique in 96 well goat anti-mouse microplate (Figure 3).  Either 

50µl of lavage supernatant or SP standard (39-2500 pg/ml) was added to each well.  Each well 
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then received 50µl of the primary antibody solution (mouse monoclonal anti-SP) and 50µl of SP 

conjugated with horseradish peroxidase.  After a 3 hr. incubation and wash, 200µl of TMB was 

added for color development.  The reaction was stopped after 30 min. with 2N sulfuric acid 

(50µl/well) causing the blue to change to yellow upon acidification.  The absorbance of each 

well was measured at 450nm, with a wavelength correction at 540nm, on a Spectra Max 340pc 

plate reader (Molecular Devices, Sunnyvale, CA).  The concentration of SP in each lavage 

sample was extracted from an SP standard curve.  All samples were run in triplicate, and as a 

negative control, a PBS sample was run with each assay. 

 

 

Figure 2. Illustration of a competitive ELISA.  (1) ELISA plate is pre-coated with capture 
antibody. (2) Sample and Tracer antigen (HRP-conjugated SP) are added and compete for a 
limited number of antigen binding sites present on the capture antibody. (3) Excess sample 
and tracer antigen are rinsed off. (4) Colored product is formed in an inverse proportion to the 
amount of antigen present in the sample.  The reaction is stopped by acid addition and 
absorbance measured at 450 nm. 
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I.  Statistical Methods 

 In all studies, differences among groups were determined using a two-tailed Student’s T-

Test using Microsoft Excel software.  Mean and standard error is reported for each value. 
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IV. RESULTS 

1.  Effect of ozone on IL-1, NGF, & SP in BALF 

 Experiments were conducted to evaluate the effects of ozone on IL-1, NGF, and SP levels 

in bronchoalveolar lavage fluid (BALF) as compared to control animals exposed to air.  BALF 

was collected 24 hours after ozone/air exposure.  Ozone exposure significantly increased levels 

of IL-1 (210.3 ± 38 pg/ml, n=4), NGF (3230.7 ± 1039 pg/ml, n=6), and SP (4280.3 ± 635 pg/ml, 

n=4) when compared to air controls (114.6 ± 9.8 pg/ml (n=6), 753.3 ± 217 pg/ml (n=5), and 

1488.7 ± 459 pg/ml (n=3), respectively) (P ≤ 0.05, Figure 4). 

 

Figure 4.  Effect of ozone exposure on the levels of (A) IL-1(air n=6, ozone n=4), (B) NGF (air n=5, 
ozone n=6), and (C) substance P (air n=3, ozone n=4) in mouse bronchoalveolar lavage fluid as measured 
by ELISA.  Values are means ± SE.   * Significant difference between air and ozone exposed animals, P = 
0.03. ** Significant difference between air and ozone exposed animals, P = 0.007.  
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2.  Effect of exogenous IL-1 on NGF and SP levels in BALF 

 Experiments were conducted to determine if intra-tracheal (i.t.) instillation of exogenous 

IL-1 would increase NGF and SP in BALF collected 24 hours after instillation and compared to 

control animals which received a saline i.t. instillation.  It is important to note that neither the 

experimental nor control animals were exposed to ozone.  NGF levels significantly increased 

from 1349.7 ± 463 pg/ml in the control animals to 3424.8 ± 915 pg/ml in IL-1 treated animals 

(n=5 both groups) (P≤0.04, Figure 5A).  BALF from IL-1 treated animals also contained a very 

significantly higher concentration of SP (4970.7 pg/ml, n=6) than BALF collected from saline 

controls (1557.8 pg/ml, n=6) (P≤0.0005, Figure 5B) 

                         

 

 

Figure 5.  Effect of IL-1 treatment on the levels of (A) NGF (n=5) and (B) substance P (n=6) 
in mouse bronchoalveolar lavage fluid as measured by ELISA.  Values are means ± SE. * 
Significant difference between treated and untreated animals, P = 0.04. ** Significant 
difference between treated and untreated animals, P = 0.0005.  

 



22 
 

3.  IL-1 Ra reduces ozone induced NGF and SP levels in BALF 

 Animals that were administered an i.t. instillation of IL-1 Ra prior to ozone exposure had 

significantly decreased levels of both NGF (2070 ± 371 pg/ml, n=6) and SP (1852.2 ± 567 

pg/ml, n=5) in BALF than in control animals that received an i.t. instillation of saline prior to 

ozone exposure (3696.5 ± 681 pg/ml, n=6 and 4959 ± 1038 pg/ml, n=4, respectively).  (Figure 6) 

 

 

Figure 6.  Effect of IL-1 receptor antagonist on the levels of (A) NGF (n=6) and (B) substance P 
(i.t. saline, n=4, i.t. IL-1Ra n=5) in mouse bronchoalveolar lavage fluid as measured by ELISA.  
Values are means ± SE. * Significant difference between treated and untreated animals, P=0.03. 
** Significant difference between treated and untreated animals, P = 0.01.  

 

4.  Tyrosine kinase inhibitor K252a failed to effect SP levels in BALF 

 K252a was first dissolved in DMSO and administered to mice via an i.t. instillation two 

and four hours before ozone exposure while control groups were administered an instillation of 

DMSO at the same time prior to ozone exposure.  There was no significant difference between 
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the two hour (4568.8 ± 447.2 pg/ml, n=6) or four hour K252a pre-treatment groups (4405.4 ± 

972 pg/ml, n=5) and their saline control groups (4871.4 ± 315.3 pg/ml, n=5 and 3927.7 ± 1515 

pg/ml, n=3, respectively) (Figure 7, A and B). 

 The next two experiments used K252a dissolved in a 10% DMSO in PBS solution.  

Initially mice were given an i.t. instillation once four hours prior to ozone exposure with control 

mice receiving the 10% DMSO in PBS solution only.  As before, there was no significant 

difference between K252a pre-treated animals (4130.5 ± 1019.6 pg/ml, n=4) and the control 

animals (4233.3 ± 2008.3 pg/ml, n=3) (Figure 7C). 

 In the following experiment, animals received an i.t. instillation of the K252a solution 12 

hours and 3 hours prior to ozone exposure and then re-administered K252a immediately after the 

ozone exposure.  Control animals were given the DMSO/PBS vehicle solution at the same time 

prior to and after their ozone exposure.  Again, there was no significant difference between the 

K252a treated group (5498.7 ± 21.1 pg/ml, n=5) and the vehicle treated group (5560.1 ± 2.3 

pg/ml, n=5) (Figure 7D). 
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Figure 7.  Effect of the tyrosine kinase inhibitor K252a on the levels of substance P in mouse 
bronchoalveolar lavage fluid as measured by ELISA.  (A) K252a instilled two hours prior to 
ozone exposure (DMSO, n=5, K252a, n=6).  (B) K252a instilled four hours prior to ozone 
exposure (DMSO, n=3, K252a, n=5).  (C) K252a in 10% DMSO/PBS delivered four hours 
before exposure (DMSO/PBS, n=3, K252a, n=4).  (D) Instillation of K252a in 10% DMSO/PBS 
twelve and three hours prior to and immediately after ozone exposure (n=5).  Values are means ± 
SE. 
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5.  Effect of anti-NGF antibody application on SP levels in BALF 

 Experimental groups of mice were administered an i.t. instillation of anti-NGF antibody 

one, two or four hours prior to ozone exposure.  Control animals received a saline i.t. instillation 

at matched times before ozone exposure.  Neither the one hour antibody pre-treatment group 

(3977.6 ± 192.7 pg/ml, n=5) nor the two hour antibody pre-treatment group (5472 ± 172.8 pg/ml, 

n=5) were significantly different from the saline control groups (3877.5 ± 867.4 pg/ml, n=4 and 

5290.5 ± 396.9 pg/ml, n=4, respectively) (Figure 8, A and B).  Even though the difference 

between the four hour antibody pre-treatment (6229.8 ± 67.4 pg/ml, n=5) and the matched saline 

control group (6505.5 ± 41.4 pg/ml, n=4) appeared to be minimal (275.7 pg/ml), it was 

significantly different (P=0.01) (Figure 8C). 
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Figure 8.  Effect of anti-NGF antibody on the level of substance P in mouse bronchoalveolar 
lavage fluid as measured by ELISA.  (A) Anti-NGF antibody instilled one hour prior to ozone 
exposure.  (B) Anti-NGF antibody instilled two hours prior to ozone exposure.  (C) Anti-NGF 
antibody instilled four hours before exposure. Saline, n=4, Anti-NGF, n=5 for all experiments. 
Values are means ± SE. * Significant difference between treated and untreated animals, P = 0.01. 
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V.  DISCUSSION 

Ozone is an ubiquitous air pollutant and has been shown to cause numerous respiratory 

effects (Lippmann, 1989; Beckett, 1991).  Of these effects, airway inflammation and AHR are 

the hallmark pulmonary characteristics of ozone exposure.  This has been observed in animal 

models and humans.  For example, human subjects who show sensitivity to ozone exposure have 

bronchial hyperresponsiveness to methacholine challenge not observed in non-sensitive subjects 

(Hackney et al., 1989; Aris et al., 1991). Asthmatics had increased inflammation markers in 

nasal lavage fluid after low level ozone challenge (0.12-0.24 ppm) when compared to non-

asthmatic control subjects (McBride et al., 1994).  The precise mechanism by which ozone 

exposure causes AHR has not yet been fully elucidated, but previous work has suggested that the 

airway inflammation seen after ozone exposure is an underlying cause.  The current study 

specifically investigates a possible signaling pathway responsible for translating ozone exposure 

to airway inflammation through the release of a sensory neuropeptide, substance P, a mediator 

proven to mediate neurogenic inflammation in the airways (Lundberg et al., 1983). 

The study demonstrates in vivo that ozone exposure significantly increases the 

concentrations of IL-1, NGF, and SP in mouse BALF.  All three of these mediators have 

previously been shown to promote airway inflammation, consistent with other animal models of 

ozone exposure and epidemiological studies (Barnes et al., 2001; Park et al., 2004; Johnson et 

al., 2005; Woolf, et al, 1994; Braun et al., 1998; Nassenstein, et al, 2004; Bachar, et al, 2004; de 

Vries, et al 2006; Lee et al., 1979; Koto et al., 1995; Joad et al., 1996; Wu et al., 1997; Graham et 

al., 2001). 

The results showing IL-1 as a key modulator of SP levels in BALF are consistent with 

our previous in vivo and in vitro reports in ferret (Wu et al., 2001, 2003) which showed that IL-1 
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released after ozone exposure enhances airway responsiveness by modulating SP levels.  This 

present study further confirms the role of IL-1 as a key intermediate signaling molecule in the 

downstream effects of ozone exposure by showing its modulatory effects on NGF.  Previous 

research has shown that IL-1 can modulate NGF expression in vitro (Olgart and Frossard, 2001; 

Pons, et al, 2001; Freund et al., 2002) and increased levels of NGF has been reported in humans, 

in vivo, in situations where IL-1 β is increased, particularly in asthma (Bonini et al., 1996; Olgart 

et al., 2002; Virchow et al., 1998; Kassel et al., 2001).  However, this study is the first report 

demonstrating the direct manipulation of in vivo NGF levels via IL-1, whether exogenously 

applied or by blockade of the ozone-induced increase of endogenous IL-1.  

This study fails in proving NGF is a key mediator of ozone-induced increases in SP, but 

only in the sense of NGF’s action through the TrkA receptor.  The inability of K252a or anti-

NGF to decrease SP concentration in mouse BALF could be dependent upon the method of 

blocking NGF effects.  K252a blocks the tyrosine kinase pathway and the NGF antibody 

decreases NGF binding to receptors.  However, neither of these approaches would affect the SP 

already present in neurons that would be released during ozone exposure.  Another possibility is 

that SP release could occur through an IL-1 related pathway not involving NGF or the release of 

unrelated mediators such as TRPV1 ligands, bradykinin, or leukotrienes (Carr and Undem, 

2001).   

NGF is classified as a neurotrophin but there is increasing evidence suggesting it is 

involved in a variety of immune functions.  NGF has even been implicated as an asthma 

mediator but direct evidence of inhibiting or blocking NGF induced effects is insufficient, 

especially in vivo.  Adding to this, the source and regulation of NGF expression in airways is not 

fully understood, but a direct action of NGF on neurons may be part of this response since NGF 
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increases the number of neurons and neuropeptide content in airways (Adler et al., 1984; Lindsay 

and Harmar, 1989; Vedder et al., 1993; Cho et al., 1995; Hoyle et al., 1998; Malcangio et al., 

2000; Hunter et al., 2000; Skoff et al., 2003). 

Although most of the data to this point suggests that TrkA mediates the majority of NGF 

effects, there is growing evidence that p75 is more important than first thought in cellular 

response to injury.  For example, it has been shown that the p75 receptor modulates the NGF 

excitation of adult rat nociceptive neurons (Zhang and Nicol, 2004).  Peripheral tissue 

inflammation increased p75 mRNA levels in dorsal root ganglia of rats while TrkA mRNA 

levels remained the same (Cho et al., 1996).  Intrathecal infusion of NGF into adult dorsal root 

ganglia increases the concentration of p75 receptors but not TrkA receptors (Verge et al., 1989).  

Additionally, local application of NGF in the iris increased p75 mRNA in sympathetic neurons 

but had no effect on TrkA expression (Miller et al., 1994).  Studies with NGF-over expressing 

mice and p75-NTR knockout mice show that NGF effects are partly mediated by the p75 

receptor in allergic airway and enhance the severity of the local inflammatory response 

(Lommatzsch et al., 2003).  Furthermore, Skoff and Adler (2006) demonstrated that in vitro NGF 

up-regulation of SP expression in adult rat dorsal root ganglia sensory neurons requires both the 

p75 and TrkA receptors.  Even though they did not demonstrate the specific contribution of each 

to the SP increase, they were able to show that blockade of the p75 receptor markedly reduces SP 

expression.  Obviously, the role this receptor has in ozone-induced increases of SP in mouse 

BALF needs to be investigated before NGF can be ruled out as a key mediator in the proposed 

transduction pathway. 

In conclusion, this study demonstrates that ozone increases the concentrations of all three 

proteins in mouse BALF, and that IL-1 is a key in vivo mediator of the ozone-induced increases 
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of NGF and SP in mouse BALF.  NGF may be a mediator of the ozone-induced increase of SP 

but these results raise the possibility that a pathway other than the TrkA receptor may transduce 

ozone mediated signaling through NGF.  Further studies involving the precise role the p75 

receptor has in this proposed mechanism are needed and could include the blockade of the p75 

receptor before ozone exposure or by exposing p75-NTR knockout mice to ozone, then 

measuring the level of SP in the BALF.  These studies may provide the pertinent information for 

solidifying this inflammatory-neuronal cascade. 
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