
 Interfac ing Matlab algorithms and functions to Scala

programming language using Matlab standalone packages

Sravanthi Nalamalapu

Problem Report submitted

to the College of Engineering and Mineral Resources

at West Virginia University

in partial fulfillment of the requirements for the degree of

Master of Science in

Electrical Engineering

Approved by

Dr. Vinod Kulathumani, Ph.D., Chair

Dr. Matthew Valenti, Ph.D.

Dr. Elaine Eschen, Ph. D.

Lane Department of Computer Science and Electrical Engineering

 Morgantown, West Virginia 2014

Keywords: Matlab, Matlab Compiler, Java, Jar file, Matlab Compiler Runtime (MCR),

Scala

ABSTRACT

Interfac ing Matlab algorithms and functions to Scala

Programming language using Matlab standalone packages

Sravanthi Nalamalapu

Scala is a modern multi-paradigm programming language which combines the features of

functional and object-oriented programming. Matlab is widely used by academic, research

institutions as well as industrial enterprises. Matlab algorithms are available only within Matlab

software due to the closed nature of Matlab software. This report discusses a simple process to

interface selected Matlab algorithms and functions to the Scala platform. A user can choose the

algorithms and functions to be interfaced. MCR (Matlab Compiler Runtime) enables execution

of standalone components generated by the Matlab compiler. The standalone component bundles

all .m files (Matlab functions) and associated .mex files together with libraries into a package. A

user can import the generated standalone package into Scala platform; thereby Matlab algorithms

can be executed and tested in Scala platform. In addition, selected Matlab functions can be used

in the Scala programming language without having Matlab software installed. This eliminates

the necessity of manual Matlab code translation to Scala platform. This report focuses on the

process that allows Matlab algorithms and functions to be accessible from the Scala

programming language.

iii

ACKNOWLEDGEMENTS

First and foremost I would like to thank God for being my strength and guide. Without him, I

would not have the wisdom or physical ability to do so.

I express my gratitude to my advisor Dr. Vinod Kulathumani for his constant support, time and

invaluable guidance in many aspects of my problem report.

I would also like to extend my thanks to Dr. Matthew Valenti & Dr. Elaine Eschen for being on

the committee and supporting the project with their suggestions and encouragement.

I would like to thank my friends for their immense support in various stages of my research

project.

Finally, I am deeply thankful to my beloved family for their encouragement and support in all

the things I do.

iv

TABLE OF CONTENTS

ABSTRACT .. ii

ACKNOWLEDGEMENTS .. iii

TABLE OF CONTENTS .. iv

TABLE OF FIGURES .. v

CHAPTER 1: INTRODUCTION ... 1

1.1 Background ... 1

1.2 Problem Statement ... 3

1.3 Contribution .. 3

CHAPTER 2: LITERATURE OVERVIEW .. 5

2.1 M2M: A Simple Matlab-to-MapReduce Translator for Cloud Computing [4] 5

2.2 How to Access Matlab from Java [1] ... 6

2.3 Building Matlab Standalone Package from Java for Differential Dependence Network Analysis

Bioinformatics Toolkit [2].. 6

2.4 Java Builder [6] ... 7

CHAPTER 3: DEVELOPMENT METHOD .. 9

3.1 Requirements and Specifications .. 9

3.2 Design .. 10

3.3 Working with the standalone package ... 11

CHAPTER 4: RESULTS ... 16

CHAPTER 5: FUTUREWORK AND CONCLUSIONS .. 22

REFERENCES .. 24

v

TABLE OF FIGURES

Figure 1 Variable Flow chart to build standalone package [2] ... 7

Figure 2 LD_LIBRARY_PATH script .. 13

Figure 3 Input given for Matlab software ... 16

Figure 4 Output in Matlab software ... 17

Figure 5 Matlab color bilateral filtering .. 18

Figure 6 Matlab Gray image bilateral filtering .. 18

Figure 7 Matlab algorithm execution in Scala .. 19

Figure 8 Color Bilateral Filtering output in Scala .. 20

Figure 9 Gray image bilateral filter result in Scala .. 20

Figure 10 Matlab Functions avaialble in Scala environment .. 21

CƛƎǳǊŜ мм aŀǘƭŀō ΨaŀƎƛŎΩ ŦǳƴŎǘƛƻƴ ǳǎŀƎŜ ƛƴ {Ŏŀƭŀ .. 21

file:///C:/Users/sravs/Desktop/Problem%20Report-%20Sravanthi%20Nalamalapu%20v1.docx%23_Toc385469345

1

CHAPTER 1: INTRODUCTION

1.1 Background

 Matlab is an easy to use programming environment for computation and powerful visualization

of technical computing. It is used in many academic, research industries and in many industries.

Matlab includes a wide range of toolboxes. Matlab ï The language of technical computing is

used to implement a wide range of algorithms.

Scala is a modern multi-paradigm programming language. It is a general programming language

and scripting language. Scala combines the features of object-oriented and functional

programming languages. It is designed to express solutions in concise and elegant code. This

programming language provides functional programming features that are not available in Java

such as immutable values, higher-order functions, pattern matching and collections. These

features help developers to be productive. Java can incorporate these features functional

languages such as closure, but it is limited due to backward compatibility. Scala features such as

implicit conversions and optional objects will help greatly to reduce the number of statements

and checks in a program. Scala tries to be leaner than Java, thus providing less boilerplate code.

Scala can mitigate the problems of concurrency (locks, semaphores etc.) and parallelism using

immutable objects. An immutable object can be copied and shared without worrying about who

is using the object. Scala interoperates with Java and .NET. Scala source code is compiled to

Java byte code. This executable code runs on Java Virtual Machine (JVM). This byte code is

machine independent, so it can run on any machine which has Java Runtime Environment (JRE).

2

All Java libraries can be accessed from Scala. Now-a-days more and more companies and Java

developers are leaning towards Scala inspired by Twitter.

The combination of Matlab and Scala platforms can open interesting new possibilities in

application development. For example, one can use Scala as a platform independent framework

together with Matlab interface. Due to closed nature of Matlab software algorithms developed in

Matlab and functions were available only with in Matlab software. Significant efforts are being

made to interface Matlab with other platforms. To address this, Matlab is shipped with Java

Virtual Machine since few releases. This enables a user to access Java classes from Matlab.

Unfortunately, this does not help to access Matlab from other platforms. Matlab software is

required to test the algorithm as well. This restricts usage of Matlab algorithms and functions in

other platforms. When Matlab algorithms are shared, if the users are only testing the algorithm

and accessing few Matlab functions it is not feasible to purchase the license for every machine.

Earlier programmers used to create source code for the same Matlab algorithm in their desired

language. However, manual translation is laborious task and error-prone process as well. This

limits the distribution and usage of algorithm developed using Matlab. To address this problem

Matlab provides Matlab Compiler Runtime (MCR) to execute standalone components generated

by Matlab compiler. Matlab compiler is invoked using ómccô command do build standalone

packages. Some efforts are made to interface Matlab to some extent with C and Java. However

there is no information provided on how to execute Matlab algorithms from Scala platform. This

report focuses on detailed process to interface Scala with Matlab.

Any Scala programmer who does not have Matlab software installed on their computer can

install MCR. With license free Scala platform a user can import these stand-alone packages to

3

use the functions included in the package and to test the included algorithms without the user

needing to install Matlab on his/her computer.

The limitations of this method are:

¶ User cannot view the Matlab code of the algorithm.

¶ Modification of original algorithm is not possible.

¶ User has to know beforehand what Matlab functions he/she needs in Scala program.

1.2 Problem Statement

The main goal is to make a user access selected Matlab algorithms and selected functions from

Scala platform using standalone packages, thus avoiding manual code translation. Matlab

Compiler ómccô command is used to build standalone packages. The user can include any Matlab

algorithms and any Matlab functions in the package. The user will be able to specify what

functions he/she wants to include in package. Once the packages are generated they are in .jar

format.

1.3 Contribution

This report describes the process to access Matlab algorithms and function from Scala platform.

This primary objective is to make a developer use Matlab algorithms and functions in his/her

Scala applications without manual translation of Matlab code to Scala code.

User machine should have MCR (Matlab Compiler Runtime) installed on his/her machine to

execute stand-alone packages. When this package is imported into Scala platform, he/she can

access and use those functions and algorithms with MCR installed on their computers.

4

When the user has many functions to include in the package, a script written in the python

programming language can be used to generate the appropriate mcc command. The stand-alone

packages contain .m files, associated .mex files and library files in it. These packages are

imported into Scala platform.

The process can be demonstrated as: Scala and MCR are installed on a user computer which does

not have Matlab installed. A user can select what algorithms and functions he/she want to bundle

in standalone package(s). For example, two stand-alone packages are built using Matlab. One

package contains all Image processing toolbox functions of Matlab. The other package contains

algorithm that implements bilateral filtering and cartoon image abstraction. These packages are

imported into Scala platform. Scala code is developed to run the Matlab algorithm and to use

selected Matlab functions.

5

CHAPTER 2: LITERATURE OVERVIEW

Significant efforts have been made in recent years to interface Matlab with various platforms like

C, R, Java and Python. The projects mentioned below are efforts made to interface Matlab with

MapReduce framework and Java platform to avoid manual code translation:

2.1 M2M: A Simple Matlab -to-MapReduce Translator for Cloud Computing [4]

M2M translates Matlab code to MapReduce (Parallel Programming model) code. M2M is

developed to translate up to 100 Matlab commands to MapReduce code in very less time.

The following are three stages for M2M development:

¶ The first stage: The token generation is done using lexical analyzer in this stage. Initially

the scanner starts analyzing by reading the Matlab source code. This input source code is

read character by character. Based on pre-defined grammar of regular expressions the

read characters are grouped to form meaningful words and symbols/tokens.

¶ The second stage: This stage is about a syntax analyzer for parsing. Syntax analyzer uses

top-down parsing in this stage. The syntax analyzer reads formal syntax specification

input as Context-Free Grammar (CFG). These tokens are grouped into units based on

CFG.

¶ The third stage: This stage is about a sematic analyzer, also called translator. It is used for

parsing or analysis of semantics. It takes appropriate actions based on expression

validations and implications. Based on Map Reduce, a simple Math Operation Library

using Map Reduce (MOLM) is built. When a math command is processed by translator,

MOLM is used to get corresponding Map Reduce code to combine with main function.

6

2.2 How to Access Matlab from Java [1]

Matlab includes an interface to access Java because Matlab is shipped with Java Virtual

Machine. This project focuses on interfacing Matlab from Java. Two approaches are described to

interface Matlab with java as follows:

¶ First approach: In this approach Java Runtime class is used to start a new Matlab process.

Through standard Matlab input and output streams, communication from Java to Matlab

is achieved.

¶ Second approach: In this approach, Java Native Interface (JNI) is used. JNI writes a

wrapper class for the C engine library of Math works. The data transfer is character and

stream based. This causes high latency and lower transfer rates when compared to direct

memory access. So, the data transfer is inefficient for large amounts of data.

Both approaches need Matlab to be installed on the machines.

2.3 Building Matlab Standalone Package from Java for Differential

Dependence Network Analysis Bioinformatics Toolkit [2]

A Matlab algorithm for network analysis bioinformatics is translated into a platform dependent

Java based software. There are four stages in this process:

¶ First stage: All Matlab files, .m or .mex of the Matlab algorithm are gathered. Matlab

compiler is used to create a shared library for the gathered Matlab files.

7

¶ Second stage: A Java driver is developed. This Java driver is used as user interface. All

inputs given to Matlab algorithm and outputs of Matlab algorithm are taken care by the

Java user interface. This will prepare native methods as well.

¶ Third stage: The variable transfer between Java and Matlab is taken care by a C driver.

This C driver is implemented with the help of JNI.

¶ Fourth stage: The shared library created in first stage and the C driver of third stage are

compiled with mbuild function of Matlab. The result is a dependent library. This library

is callable from standalone Java interface.

Figure 1 Variable Flow chart to build standalone package [2]

2.4 Java Builder [6]

This is also called Matlab builder for Java. One can use Java Builder to wrap Matlab functions

into Java class. Matlab functions are encapsulated as methods under this wrapper class. These

8

Java classes and methods can be invoked from Java application. The wrapper class packages can

be deployed to end user. To execute the deployed package end user should have Java Builder

supporting files and MCR (Matlab Compiler Runtime).

Scala is a powerful programming language which is both functional and object-oriented. Using

Scala one can get rid of boilerplate code such as variable type declaration, object declaration

which many programming languages have. This problem report is an effort to interface Matlab

with Scala. A stand-alone package is built in Matlab using python script which bundles all

functions of Matlab Image Processing toolbox; thereby a user can access and use any Matlab

function of Image processing toolbox in Scala program together with selected algorithms.

9

CHAPTER 3: DEVELOPMENT METHOD

3.1 Requirements and Specifications

Matlab R2013a available on wcrl, WVU Wireless Communications Research Laboratory [12]

cluster is used to create desired stand-alone packages. Matlab Compiler Runtime is required on

user, Scala developer machine. Java Development Kit (JDK) is necessary for user to work with

the stand alone packages created. The above mentioned software packages are dependent on each

other as they have to inter-operate. Due to the specifications of the Matlab compiler it is

important to note that we need specific versions of the software packages to set up the

environment. Matlab compiler runtime is operating system specific as well. The user can only

run the applications with the specific version of the MCR that is created by the specific version

of Matlab Compiler. The Linux operating system was used for this report. So, we should have

our entire environment set up in Linux operating system. As Matlab R2013a 64-bit Linux

version is used, MCR of corresponding version MCR 8.1 64 bit Linux is needed. For Linux

operating system starting from Matlab R2012b versions only 64-bit of MCR is supported. We

should get JDK of version corresponding to Matlab version we have. Matlab command 'version -

java' gives the Java version it has. The final form of the stand-alone package generated will be a

jar file which requires user to have same version of JDK/JRE in their machines. We need JDK

1.6.0 for this project.

Eclipse, an Integrated Development Environment (IDE) should be installed to work with Scala.

Eclipse has various plug-ins available because of which it can be used to develop applications in

various programming languages like Java, python, Perl, C, C++ etc.

10

The programming language used is Scala. Scala is an object oriented, functional programming

and scripting language which runs on JVM. This enables Java and Scala to be mixed freely for

seamless integration. Scala supports immutable values, pattern matching, case classes, higher-

order functions etc. When compared to Java it provides less broiler plate, concise, more

expressive and cleaner code can be written.

3.2 Design

The .jar file generated by Matlab compiler contains one or more classes that encapsulate Matlab

code. These classes when imported into Scala platform provide methods that are callable directly

from Scala code. Deploy tool of Matlab provides a GUI that can be used to create the stand-alone

package. If command line is preferred mcc is the Matlab command that can be used instead of

deploy tool. The mcc command works like this:

mcc -vW 'java:packageName,className' file1.m file2.m file3.m é..

The details of this mcc command are:

The option 'v' stands for Verbose. When this option is used together with mcc command we can

see the display of compilation steps, source file names as they are processed, the names of the

generated output files as they are created etc. The option -W is used together with mcc command

to create a class that encapsulates one or more Matlab files. 'java:' is the keyword that tells the

Matlab compiler to create a Java component. Package name and class name specify the name of

the Scala package and Scala class to be created respectively. Multiple Matlab files, names

separated by space in mcc command can be encapsulated as methods under className.

11

Matlab has wide variety of toolboxes available and each of these toolboxes provides various

functions readily available to the user. Image processing toolbox is chosen as an example in this

report. A list containing names of functions from Image Processing toolbox and some general

Matlab functions is being made. The list can get lengthy with many functions to be included in

the Scala package and class. Going through each file name and including it in mcc command can

be time taking, error prone and tedious when we have few hundreds of Matlab files to be

encapsulated in the package. To avoid this, a python script is developed which takes the file

containing list of Matlab functions as input and generates required mcc command that creates the

Scala package of functions listed.

3.3 Working with the standalone package

The package created by Matlab compiler is a jar file that is imported into Eclipse IDE. In order

to enable Scala applications to interoperate with Matlab functions invoked, Matlab has an API

which is implemented as a package com.mathworks.toolbox.javabuilder.MWArray. This

package should be imported at the starting of Scala project. This package provides a set of data

conversion classes derived from MWArray, which is an abstract class. These sub classes of

MWArray abstract class represent major Matlab data types: MWNumericArray,

MWLogicalArray, MWCharArray, MWCellArray and MWStructArray. Each of these classes

provide constructors and basic set of methods to instantiate and dispose Matlab arrays, methods

to read and write array data and method to convert to other data types. If a native array is used as

an input parameter without explicit data conversion, MCR converts it to an instance of the

appropriate MWArray class before it is passed to the method.

12

A set of overloaded methods, which correspond to calls to the Matlab functions for each

combination of the possible number and type of input arguments is generated.

The data type returned from a Matlab method can be an instance of the appropriate MWArray

subclass. But the return data type is not converted to a Scala type by MCR. The user has to

convert return data type using ótoArrayô method and then dispose the array.

On the user machine, MCR directory should be added to system path specified by the user

systemôs environment variable. In Linux system, as GUI is not available we have to use terminal

to set PATH. LD_LIBRARY_PATH should be set up. If a user set the LD_LIBRARY_PATH it

works only once. If we use bash file to set the environment path variables, this will set necessary

variables whenever started. This path changes for 32 bit and 64 bit Linux machines. The

following is the LD_LIBRARY_PATH for 64-bit Linux machine:

/usr/local/MATLAB/MATLAB_Compiler_Runtime/v81/runtime/glnxa64:

/usr/local/MATLAB/MATLAB_Compiler_Runtime/v81/sys/os/glnxa64:

/usr/local/MATLAB/MATLAB_Compiler_Runtime/v81/sys/java/jre/glnxa64/jre/lib/amd64/native_t

hreads:

/usr/local/MATLAB/MATLAB_Compiler_Runtime/v81/sys/java/jre/glnxa64/jre/lib/amd64/server:

/usr/local/MATLAB/MATLAB_Compiler_Runtime/v81/sys/java/jre/glnxa64/jre/lib/amd64:

/usr/local/MATLAB/MATLAB_Compiler_Runtime/v81/bin/glnxa64

/usr/local/MATLAB/MATLAB_Compiler_Runtime/v81 is called MCR root, where MCR is

installed.

13

Figure 2 LD_LIBRARY_PATH script

On target machine using terminal navigate to eclipse folder:

 cd /opt/eclipse

Start the eclipse executable:

./eclipse

Do ssh to wcrl cluster to get the stand-alone package:

ssh srnalamalapu@wcrlcluster.csee.wvu.edu

To use the stand alone package generated by Matlab compiler we must:

Import Matlab libraries using import function as follows

import com.mathworks.toolbox.javabuilder.*;

Import the package and class created

import packageName.*;

import className.*;

14

The class should be instantiated before using its methods in the program:

className funs = new className();

Now we can call Matlab functions as if they are functions of the class just created.

The user has to handle necessary data type conversions to and from Matlab to Scala. The native

resources use by MATLAB algorithm or functions should be made free at the end of the program

so that it is available for garbage collector.

For example if the user wants to access a Matlab algorithm which does bilateral filtering and

cartoon image abstraction:

The stand-alone package is generated using the command:

mcc -W 'java:BFPackage, BFClass' cartoon.m, colorspace.m, bfilter2.m, runDemo.m

The package generated BFPackage.jar is transferred to local computer using scp command. Now

this package is imported to Eclipse IDE which will be listed under referenced libraries.

The Scala program is:

import com.mathworks.toolbox.javabuilder._

import FunsPackage2._

import BFPackage1._

object BilateralFilter {

//Instantiate the class BFClass1

val funs = new BFClass1()

//call methods in the class instantiated

var im1 = funs.imread(1,"academy.jpg")

var run1 = funs.runDemo()

/*Array of Objects is returned when a Matlab method is called.

15

The first element of the array is the first output parameter, second element is the second output

parameter returned and so on.*/

//Convert returned object data type to an instance of MWArray or specific MWArray using

classID method

var im2 = im1(0).asInstanceOf[MWNumericArray]

im2.classID()

//Convert MWArray to a regular Array with same dimensions as the underlying Matlab array

var im3 = im2.toArray()

//Get the dimensions of array

val dim = im2.getDimensions()

//Dispose native resources

MWArray.disposeArray(run1)

MWArray.disposeArray(im1)

//Make it eligible for garbage collection

run1 = null

im1 = null

}

16

CHAPTER 4: RESULTS

A Matlab algorithm which illustrates bilateral filtering and cartoon image abstraction is chosen.

Bilateral filtering is a non-iterative method for edge-preserving smoothing of an image.

Cartoon function modifies the color image to have a cartoon-like appearance.

Colorspace function converts the color representation of a given image.

This algorithm has 4 files ï cartoon.m, colorspace.m, bfilter2.m and runDemo.m.

The inputs for this algorithm are a color and a gray image. The output of the algorithm in

MATLAB software is:

Figure 3 Input given for Matlab software

17

Figure 4 Output in Matlab software

18

Figure 5 Matlab color bilateral filtering

Figure 6 Matlab Gray image bilateral filtering

19

The output of this Scala program is exactly same output as in Matlab software. The results of the

Matlab algorithm executed in Scala platform are shown below:

Figure 7 Matlab algorithm execution in Scala

20

Figure 8 Color Bilateral Filtering output in Scala

Figure 9 Gray image bilateral filter result in Scala

21

Figure 10 Matlab Functions avaialble in Scala environment

Figure 11 aŀǘƭŀō ΨaŀƎƛŎΩ ŦǳƴŎǘƛƻƴ usage in Scala

