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ABSTRACT

Modeling Seasonal Dynamics of Surface Soil Bulk Density in a
Forest in West Virginia

Qiuchen Li

Bulk density is a commonly measured soil property during field investigations
of soils. Accurate and reliable bulk density measurements are critical for
assessing soil productivity and soil degradation. It is recognized that bulk
density is variable both spatially and temporally. However, most attempts
to quantify the dynamic nature of bulk density have focused on agricultural
fields and the effects of tillage operations. Our objective was to determine if
there are significant seasonal changes to the measured bulk density of surface
soil horizons (O and A) in a forested ecosystem. The frame method was used
to measure bulk density at monthly intervals for 12 months at 10 locations
within a forested catchment selected using a generalized random tessellation
stratified spatial sample. We report the results of fitting a linear mixed model
to bulk density to examine the effects of seasonality and horizons. Moreover,
a B-spline expansion on time is used to examine non-linear seasonal effects
for a specific soil horizon.
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1 Introduction

Bulk density of soil is determined by the mass of soil per volume of soil, which

is critical for assessing soil productivity and soil degradation. Moreover,

accurate and reliable bulk density measurements are the pivots for converting

mass-based measurements to volume-based values. In forested ecosystems,

bulk density is used to evaluate the litter layer and forest floor for erosion

potential, soil-water relationships, soil pH, etc. It is known that bulk density

greatly depends on the mineral makeup and soil layer, or horizon. The

differentiation of the bulk density is largely the result of influences such

as the existence of rock fragments and the existence of macroscopic vegetal

(Nottingham et al. 2013 [1]).

Coopers Rock State Forest is a 12,713 acre state forest located in Monon-

galia and Preston counties in West Virginia (www.coopersrockstateforest.com

[2]). Its southern edge borders the Cheat Lake and the canyon section of the

Cheat River. The landscape is similar in the forest, where it consists of even

aged, fire tolerant species such as scarlet oak and red maple. Nottingham

et al. (2013 [1]) used the frame excavation method to measure bulk density

of surface soil horizons (Oi, Oe and A, from top to bottom) at monthly in-

tervals for 12 months at 10 random locations in Coopers Rock (see Figure

1 in Appendix). They fit a linear mixed model to ln(RFBD), where RFBD

is rock-free bulk density, using the fixed factor Horizon (Oi, Oe, and A), the

predictor Month (1, 2,..., 12) and Plot*Horizon random effects. Based on

Akaike’s Information Criterion and a likelihood ratio test, they selected a

first-order autoregressive (AR(1)) error covariance structure.

They found out that there were large differences in the RFBD among the

three horizons, with O horizons having the lowest values and the A horizon

is the highest. According to their research, there were no obvious seasonal
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effects nor trend observed in the Oe or A horizon RFBD data. However, they

discovered that there was mild evidence of seasonal effects for RFBD in the

Oi horizon. From the plot of ln(RFBD) in Figure 1, where the x-axis is the

month, the association is non-linear. Thus, we chose a B-spline model to

address the seasonality.

A linear mixed model assumes that the relationship between the mean of

the dependent variable y, which is the response, and the factors, which are

fixed and random effects, can be modeled as a linear function (Ruppert et

al. 2013 [3]). The error variance is constant and is not dependent on the

mean. The random effects follow a normal distribution with mean 0 and the

variance of y depends on a set of unknown components. Conceptually the

variance components estimation problem can be broken into two parts. The

first part is the estimation of the variance components associated with the

random effects. The second part is the estimation of the variance components

associated with the error distribution.

A spline function is a piecewise polynomial function in which the same

degree individual polynomials are connected “smoothly” at join points from

prespecified knots (James et al. 2013 [4]). Basis functions are used to form a

linear combination in a regression spline format that allow us to adequately

model non-linear behavior between y and x. The basis set is a family of

functions, that we can get from statistical software, or transformations that

can be applied to a variable X: b1(X), b2(X), ..., bk(X). The points where

the coefficients change are called knots. Both the first and second derivatives

of the piecewise polynomial must be continuous at knots to keep the function

smooth. Thus, cubic splines are popular because the discontinuity cannot

be detected by human eyes. In this paper, we used a cubic B-spline basis,

which is the default in SAS software.

The West Virginia University Division of Plant and Soil Sciences was
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interested to determine if RFBD is influenced by changing seasons. My

objective was to use the dataset from the Oi horizon collected by Dr.James

Thompson and determine how seasonal effects impacted the RFBD.

2 Methods

Table 1 below shows some basic statistical summary information. We took

the log transformation of RFBD initially because of non-constant variance

seen in the model from Nottingham et al. (2013 [1]), which is shown as the

last row of Table 1, denoted tRFBD.

Table 1

Following is a plot of ln(RFBD) versus month of data collection (Month).

Using the model from Nottingham et al. (2013 [1]), as we can see in Fig-

ure 1, it is not suitable to fit the trend as linear. September was the first

observed month, October was the second, so on. August of the next year is

the last month. The ln(RFBD) during the fall was the lowest in the year.

With seasons changing, the ln(RFBD) goes up in the winter (December to

February), reaches a peak in spring (March to May), and then goes down in

the summer (June to August). Notice the values of November look unusual

due to a big storm that year.
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Figure 1

A model with both fixed effects and random effects is called a mixed-

effects model or linear mixed model (Gurka 2006 [5]). Mixed-effects models

are primarily used to describe relationships between a response variable and

some covariates in data. These covariates can contain classification factors.

A linear mixed model is:

y = Xβ +Z1b1 +Z2b2 + ...+Zmbm + ε (1)

where ε ∼ N(0, σ2I), Xn×p is a fixed effects design matrix, β is a fixed

effects (p× 1) vector of unknown, constant population parameters, and Zi is

an (n×ri) random effects design matrix, where i = 1, . . . ,m. bi ∼ N(0, σ2
plot)

is a random effects (ri×1) vector associated with a particular plot selected at

random from the population. We also assumed the ln(RFBD) of one month

would have an effect on the next month, following an AR(1) structure. We
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treated the errors as AR(1), εt = φεt−1 + ωt, which has two parameters: σ2
w

and φ.

A spline model is:

yi = β0 + β1b1(xi) + β2b2(xi) + β3b3(xi) + ...+ βKbK(xi) + εi (2)

The basis functions b1(.), b2(.), ..., bK(.) are functions of X, which is fixed and

known (James et al. 2013 [4]). We can treat b1(xi) as x∗1, b2(xi) as x∗2 and so

forth. Thus, equation (2) can be written as:

yi = β0 + β1x
∗
1 + β2x

∗
2 + β3x

∗
3 + ...+ βKx

∗
K + εi (3)

As mentioned, spline function is a piecewise polynomial function in which

the individual polynomials, the basis functions, have the same degree d

(http://support.sas.com [6]). These basis functions are connected smoothly

at join prespecified points, referred to as knots. Visually, a cubic spline, a

spline of degree 3, is a smooth curve, and it is the most commonly used

spline.

As we can see, where we should place the knots is the key of fitting a spline

model. Usually there are two ways: one way is to place more knots where

we feel the function might change frequently, and to place less knots where it

seems to behave in a uniform fashion; another way is to set the desired degrees

of freedom in a statistical software, and then the software will automatically

select the corresponding amount of knots at uniform quantities of the data

(James et al. 2013 [4]). In this paper, we used SAS to do our analysis and

to choose knots. Table 2 on the left hand side shows that SAS chose 9 knots

and where it chose the knots. Those stars are showing that some knots are

outside of the data boundaries, which would not be shown on the graph.
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Table 2

A B-spline basis can be built by starting with a set of Haar basis functions,

which are functions that are 1 between adjacent knots and 0 elsewhere. Then

applying a simple linear recursion relationship d times, this yields the n+d+1

needed basis functions (http://support.sas.com [7]). Since we used cubic B-

spline basis, the d here was 3. For the purpose of building the B-spline basis,

the n prespecified knots are referred to as internal knots. Since negative

months and the months larger than 12 are not actually in the domain, months

3.75, 6.50 and 9.25 are internal knots. Thus, the n was 3 and we obtained

3 + 3 + 1 = 7 basis functions. The right hand side of Table 2 tells where the

7 basis functions, bi(.) >= 0, are non-zero. For instance, basis function 1 is

non-zero at months from -4.5 to 3.75. This construction requires d additional

knots, known as boundary knots, to be positioned to the left of the internal

knots, and MAX(d, 1) boundary knots to be positioned to the right of the

internal knots. Therefore, we obtained 3 + 3 + 3 = 9 knots.

7



Since we fit a B-spline expansion on Month, the predictors are functions

of Month. Then we fit a linear mixed model to ln(RFBD) with the B-spline

expansion of Month and AR(1) errors on the right hand side. For each plot,

we treated it as a time series of length 12, so that we have 10 time series

total, each of length 12.

We used the model to obtain the conditional predictions and marginal

predictions of ln(RFBD). We used contrasts c′µ=0, where µ = Xβ is the

parameter vector and c is the contrast coefficient vector, to check whether

there were seasonal differences, for example: fall versus winter. We used the

marginal predictions of September, October, and November across the 10

plots to obtain the grand mean for fall. We also obtained the mean of winter

in the same way and then estimated the following seasonal contrast.

(µ1 + µ2 + µ3)/3 − (µ4 + µ5 + µ6)/3 = 0 (5)

where µi is the marginal mean for month i.

We use month 5 as an example to explain how to get the marginal pre-

dictions ŷm = β̂
′
x∗ of ln(RFBD) by linear algebra. Table 3 shows the basis

values for month 5. Hastie et al. (2008 [8]) introduce the theory about how

to calculate these basis functions, but here we just use the result given by

SAS. According to Table 2 right hand side, month 5 only gets positive sup-

port from basis functions 2, 3, 4, and 5. These four basis functions are then

evaluated at the 5th month.

8



Table 3

We can obtain the β̂’s of the linear mixed model from Table 4. The

marginal prediction of 5th month is the values of the basis functions multi-

plied by the appropriate β̂’s, which is:

ŷ5 = −3.6190 + (−0.4178)(0.027) + (0.4185)(0.507) + (0.6195)(0.4503) +

(0.9466)(0.0157) = −3.1243
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Table 4

We can get the marginal predictions of 12 months in the same way. Then,

the predicted ln(RFBD) of fall is the average of ŷ1, ŷ2, and ŷ3 that is:

ŷfall = (−3.16712 − 3.5136 − 3.45165)/3 = −3.377457

The other three season’s predictions were calculated in the same way. Based

on equation (5), the estimated difference between fall and winter is:

ŷfall − ŷwinter = −3.377457 − (−3.13706) = −0.240397

Then, we checked whether this difference is significant using a t-test.

3 Results

Table 5 is the result of using a likelihood ratio test on the plot variance

component and on the autocorrelation parameter φ. The first row tests

whether there is meaningful plot-to-plot variation; that is, σplot = 0 or σplot >

0. The second row tests whether φ is 0 or not. If φ is 0, then we do not
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need AR(1) which means εt = ωt, where ωt is white noise (0, σ2). From

the P -values we can see that there is no plot-to-plot variation and it is not

necessary to fit an AR(1) model for the errors. However, the AR(1) model

was retained for consistency with the previous model used earlier in this

study.

Table 5

The estimate of the intercept in Table 6 is the estimate of σ2
p and it is near

0. Since we already know that there is no significant plot-to-plot variation,

we would not pay attention to it. The estimate for AR(1) is the estimate

of φ so the auto-correlation parameter of the AR(1) model is estimated to

be -0.03301. In the third row, σ2 is estimated to be 0.1496, the estimate of

V ar[εt].

Table 6

We also checked other results from fitting the B-spline model. Type 3

F-tests of fixed effects were highly significant for the B-spline expansion of
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Month (P -value < 0.0001). Thus, using the B-spline model to address the

non-linearity of the longitudinal profiles is needed and correct.

After fitting the linear mixed model to ln(RFBD) with a B-spline expan-

sion of Month and AR(1) errors, we obtained marginal predictions of y. The

results of seasonal contrast hypothesis tests are shown in Table 7. Since we

did six tests at once, we had to adjust these P -values to make sure αf = 0.05

was preserved. We used the Holm-Bonferroni procedure in this paper. From

the P -values in Table 7, we can tell fall versus all other seasons is significant

and winter versus spring is also significant. However, there is no difference

between winter and summer, and spring and summer. Overall, seasonality

does exist.

Table 7

Looking at the left top panel of Figure 2, the scatter is generally evenly

dispersed vertically about zero so the variance in the residuals appears con-

stant. In the left bottom plot, the assumption of normal errors is plausible

due to residuals following the line approximately. Since every studentized

residual is approximately between -3 and 3, as they follow an approximate

N(0,1) distribution, there are no outliers, as shown in the right top panel.

Thus the assumptions of the model are met.
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Figure 2

Figure 3 is the scatter plot of ln(RFBD), where the x-axis is the month,

and the fitted longitudinal profiles for all the plots constructed using inter-

polated conditional predictions. We used different characters to represent

each plot. Since there is no plot-to-plot variation, they stack up on top of

one another.
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Figure 3

4 Discussion

Since the seasonal effects of RFBD do exist, soil scientists should be aware

that it is better to measure the Oi horizon in the same season to eliminate

these effects when they are doing other effects comparisons.

Following is an explanation of the non-linear behavior we observed from

fitted model. The leaves fall on the ground in the fall, yet initiation of de-

composition has not started and the RFBD is at its annual lowest annual

level. During the period of winter, decomposition of leaves on the ground re-

sults in the increasing amount of RFBD. In spring, the temperature starts to
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increase, accelerating the decomposition and eventually we see the maximum

amount of RFBD in a year. However, RFBD starts to decrease in summer.

Comparing Figure 1 with Figure 3, the spline model is a much better fit

for ln(RFBD). It is easy to see the trend and seasonality of RFBD from the

fitted profiles where Month in this model is a numerical predictor. Segmented

regression and ANOVA approach are other alternative models we could have

considered. However, splines are more flexible than segmented regression to

fit curves. Moreover, we can keep Month as a numerical predictor rather

than setting 12 levels in ANOVA to check seasonal effects.

We could also use the same statistical method to analyze whether Oe and

A horizons are affected by seasonal effects. This would be a meaningful topic

for the soil sciences.
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Figure 1
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SAS code

options nodate ls = 80 ps = 56 pageno = 1;

ods pdf;

ods graphics on;

data thompson01;

infile ’CRdata.csv’ dsd firstobs = 2 lrecl = 500;

input Month Plot $ Horizon $ TotalBD RFBD CWDBD;

run;

data thompson01;

set thompson01;

if Horizon = ’Oi’;

catMonth = Month;

tRFBD = log(RFBD);

run;

proc print data = thompson01;

run;

proc means data = thompson01;

run;

proc glimmix data = thompson01 plots = studentpanel;

class Plot catMonth;

effect spl = spline(Month / details);

model tRFBD = spl / solution ddfm = kr;
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random int / subject = Plot;

random catMonth / subject = Plot residual type = ar(1) vcorr;

covtest 0 . .;

covtest . 0 .;

output out = glmmout

predicted(noblup) = mPred lcl(noblup) = mLPred ucl(noblup) = mUPred

predicted = cPred lcl = cLPred ucl = cUPred;

estimate ’Test case - month 5 marg’ int 1 spl [1, 5] / e;

estimate ’Fall vs Winter’ spl [-1, 1][-1, 2][-1, 3]

[1, 4][1, 5][1, 6],

’Fall vs Spring’ spl [-1, 1][-1, 2][-1, 3]

[1, 7][1, 8][1, 9],

’Fall vs Summer’ spl [-1, 1][-1, 2][-1, 3]

[1, 10][1, 11][1, 12],

’Winter vs Spring’ spl [-1, 4][-1, 5][-1, 6]

[1, 7][1, 8][1, 9],

’Winter vs Summer’ spl [-1, 4][-1, 5][-1, 6]

[1, 10][1, 11][1, 12],

’Spring vs Summer’ spl [1, 7][1, 8][1, 9]

[-1, 10][-1, 11][-1, 12]

/ divisor = 3 adjdfe = row adjust = bon stepdown e;

run;

proc print data = glmmout;

run;
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proc sgplot data = glmmout;

scatter y = tRFBD x = Month / group = Plot;

series y = cPred x = Month / group = Plot;

yaxis min = -4.5 max = -1.5;

run;

ods graphics off;

ods pdf close;

quit;
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