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ABSTRACT 

 

Reconfigurable Universal Fuzzy Flip-Flop: Applications to Neuro-Fuzzy Systems 
 

Essam A. Koshak 

This research proposes a universal fuzzy flip-flop (UFFF) that can be reconfigured as a fuzzy 
SR, D, JK, or T flip-flop. This structure is implemented in two different neuro-fuzzy 
frameworks. First, when the fuzzy flip-flop was integrated in a multi-layer neural network, the 
resulting reconfigurable fuzzy-neural structure showed significant learning ability. For hardware 
implementation, the sigmoid activation function of neurons in the hidden layers of a multilayer 
neural network was replaced by the quasi-sigmoidal transfer characteristics of the universal 
fuzzy flip-flop in the reconfigurable fuzzy-neural structure. Also, the activation function of the 
output layer of the neural network was replicated with a saturating linear transfer function by 
choosing appropriate parameters for the proposed reconfigurable universal fuzzy flip-flop. 
Experimental results show that the reconfigurable fuzzy-neural structure can be effectively 
trained using either a large or sparse set of data points to closely approximate nonlinear input 
functions. In the second context, the universal fuzzy flip-flop was used for learning and 
predicting the responses of a fuzzy state machine. The proposed design uses a structure of the 
universal fuzzy flip-flop and a logic processor of fuzzy logic neurons (OR and AND neurons). 
The experimental results illustrate that the performance of the fuzzy state machine using the 
proposed universal fuzzy flip-flop is comparable to that of the traditional neural network. 
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1 Introduction 

Fuzzy logic applications have evolved in hardware at the chip level for many embedded systems. 

Fuzzy logic gates and fuzzy flip-flops proposed in research have been designed for different 

fuzzy logic systems such as applications of fuzzy flip-flops to circuit design using fuzzy FPGA 

[1]-[7]. A fuzzy flip-flop is an extension of a binary flip-flop where the values in the truth table 

is superset of binary logic and includes all real values from 0 to 1. The binary AND, OR and 

NOT operations are substituted by their fuzzy equivalents, known as t-norm, co-norm, and fuzzy 

negation respectively. There are many fuzzy logic applications applied to real-world modeling 

and control of robotics, power systems, and antilock braking system [12]. Using the fuzzy flip-

flop as a basic building block, some researchers have also combined it with neural networks to 

design intelligent fuzzy state machines [8]-[9]; other researchers have extended it to approximate 

nonlinear functions [10]-[13]. The unknown function to be approximated may resemble a non-

linear control system, where a neural network can be used to implement the controller [14]. The 

integration of fuzzy logic and neural networks produces intelligent machine-learning hardware 

with the ability to learn from its input data. In the literature, most applications have focused on 

individual fuzzy flip-flops.  

In this research, the design of a reconfigurable universal fuzzy flip-flop (UFFF) is proposed [13]. 

It can be configured as a fuzzy SR flip-flop, fuzzy D flip-flop, fuzzy JK flip-flop or fuzzy T flip-

flop. Such a building block is useful for rapid prototyping and designing complex fuzzy systems. 

The reconfigurable UFFF is integrated in two applications: neural network function 

approximation and fuzzy-neural finite state machine. 

First, the UFFF is integrated with a neural network to form a fuzzy-neural structure that has the 

benefits of both a neural network and a fuzzy system. The ability of the resulting fuzzy-neural 

structure to learn any nonlinear input function and generate an output that closely approximates 

the input is studied. Next, the UFFF is integrated with fuzzy-neural state machine structure that 

can form an embedded agent in the framework of granular computing. The learning ability of 

both proposed reconfigurable fuzzy-neural structures is studied. 
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2 Proposed Universal Fuzzy Flip-Flop 

Fuzzy flip-flops designed as individualized fuzzy logic device such as fuzzy JK flip-flop. In this 

report, a universal fuzzy flip-flop is proposed to form a fuzzy flip-flop building block that can be 

reconfigured as a specific fuzzy memory element based on specific application [13]. The 

universal fuzzy flip-flop can be reconfigured to (a) meet design specification, (b) alter the fuzzy 

memory computing structure in the event of component failure, or (c) incorporate online design 

adaptations based on new features. Figure 1 illustrates the proposed universal flip-flop that can 

be reconfigured by signals X and Y into four flip-flop modes: SR, JK, D, and T. Here, A and B 

are the flip-flop binary inputs and the characteristic equation of the proposed universal flip-flop 

is defined as: 

    (   )(     ̅)(   ̅   )( ̅   ̅   ̅   ̅)( ̅   ̅   ̅   ̅)  (1) 

 

 

Control 
Inputs

Flip-Flop 
Inputs Flip-

Flop 
ModeX Y A B

0 0 S R SR

0 1 D - D

1 0 J K JK

1 1 T - T

A

B

Q

Q

X Y

 
Figure 1 Universal Flip-Flop 

 

 

The characteristic equation Q+ of the proposed universal fuzzy flip-flop can be realized by 

transforming the binary operators of the logical product (intersection), logical sum (union), and 

complement (negation) in Equation 1 to the corresponding fuzzy logic operators, described in 

fuzzy set theory. The logical product is transformed to fuzzy intersection operator referred to as 

t-norm (T ) or triangular norm operator. The logical sum is transformed to a fuzzy union operator 
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referred to as the s-norm (S) or t-conorm operator and the logical complement is replaced by the 

fuzzy negation operator (N). The two operations t-norm and s-norm have a completely dual 

axiomatic skeleton and can be defined independently. The axiomatic skeleton for fuzzy set 

intersections and unions satisfy boundary conditions; they are commutative, monotonic, and 

associative. In the literature, there are several definitions of t-norms and s-norms. For example, 

there are algebraic norms, Dombi norms, and Yager norms that represent triangular norms of 

fuzzy system [11]-[12]. Appendix A summarizes selected t-norm and s-norm that are commonly 

used. In this research, the algebraic norms are first used and are defined as: 

a T  b = a.b 

a S  b = a + b – ab 

N (a) = 1 – a 

 Using the algebraic fuzzy norms, the binary characteristic equation of the reconfigurable 

universal flip-flop defined in Equation (1) can be transformed to the fuzzy characteristic equation 

given by [13]: 

Q+ =  (1-X) (1-Y) [(A + Q - AQ) (AB - B + 1)] +  

(1-X) Y [A (A + Q - AQ)] +  

X (1-Y) [(1-ABQ) (A + Q - AQ) (AB - B + 1)] +  

XY [(AQ - 1) (AQ - Q - A)]      (2) 

Control inputs X and Y are binary while inputs A and B of the universal fuzzy flip-flop take any 

value from 0 to 1. Each input combination yields a large number of output sequences for the 

present state Q, and next state Q+. The following figures represent the fuzzy dynamic output 

characteristics between Q and Q+ for different values of A and B, and for different modes of the 

universal fuzzy flip-flop.  Figure 2 shows the universal fuzzy flip-flop dynamic characteristics in 

JK-mode. 
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Figure 2 JK-mode of the universal fuzzy flip-flop characteristics using algebraic norms 
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As shown in the five graphs of Figure 2, where X=1, Y=0, and K=0, curves (lines) start from the 

same initial state Q=0 and converge to the same final state equal to 1 for any nonzero value of 

the J input. The speed of change as denoted by the slope depends on the value of the J input. The 

higher the value of J, the faster the change occurs in the next state value Q+ of the fuzzy flip-

flop. Figure 2 also illustrates the pattern of changes for different configurations of the J and K 

inputs. These patterns are more complex and depend on which signal prevails [9]. Similarly, 

Figures 3, 4 and 5 show the universal fuzzy flip-flop dynamic characteristics in D-mode, T-

mode, and SR mode respectively.  
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Figure 3 D-mode of the universal fuzzy flip-flop characteristics using algebraic norms 
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Figure 4 T-mode of the universal fuzzy flip-flop characteristics using algebraic norms 

 

 
Figure 5 SR-mode of the universal fuzzy flip-flop characteristics using algebraic norms 
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Dombi norms are another example of triangular norms that have been discussed in fuzzy logic 

literature [11]-[12] and are defined as: 


1

11111

1 b T a

































ba

       (3) 
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1 b S a
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   (4) 

Another example, Yager norms, are defined in literature [11]-[12] as: 

     







 w

ww
ba

1

11,1min1 b T a    (5)

 
  








 www ba

1

,1min b S a
     (6) 

where  and w are optimization parameters whose values are within the open interval (0,). If 

=1 in (3) and (4), they are called Hamacher norms. If w=1 in (5) and (6), they are called 

Łukasiewicz norms. Using the Dombi and Yager fuzzy norms, the binary characteristic equation 

of the reconfigurable universal flip-flop defined in Equation (1) can be transformed to the fuzzy 

characteristic equation. Control inputs X and Y are binary values while the flip-flop inputs A and 

B of the universal fuzzy flip-flop take any value from 0 to 1. Each input combination yields a 

large number of output sequences for the present state Q, and next state Q+. Figures 12 to 19 in 

Appendix B and Appendix C represent the fuzzy dynamic output characteristics between the 

present state Q and the next state Q+ for different values of flip-flop inputs A and B, and for 

different modes of the universal fuzzy flip-flop using Dombi fuzzy norms and Yager fuzzy 

norms, respectively. These unlimited output response patterns make the universal fuzzy flip-flop 

a powerful building block for fuzzy logic system design.   
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3 Reconfigurable Fuzzy-Neural based Function Approximation 

In the previous section the relationship between the current state Q and the next state Q+ of the 

UFFF was shown. However, if the input A is plotted versus the output Q+ of the UFFF in all 

four flip-flop modes in different norms, a quasi-sigmoid transfer characteristic is observed. For 

example, Figure 6 illustrates such curves for different values of Q using the UFFF in JK-mode. 

In fact, the different norms of various modes of the UFFF show the quasi-sigmoid transfer 

characteristic [12].  
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Figure 6 Input J versus output Q+ of the UFFF in JK-mode 

 

Usually symmetrical and continuous differentiable activation functions are used in neural 

network neurons. Therefore, the UFFF modes can form a powerful, smoothed, and differentiable 

threshold unit in a multilayer perceptron. In this section, the proposed reconfigurable universal 

fuzzy flip-flop is used to learn any nonlinear input function to generate an approximate function 

at the output. It is well known that feedforward multilayer neural networks can uniformly 

approximate any nonlinear continuous function. Figure 7 shows a multilayer feedforward fuzzy-

neural network with two hidden layers. In general, the output F is expressed as a function of the 

input x and interconnection weights w. 
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where i=1,2,…,n;       is the synaptic weight between input xi and a neuron in the first hidden 

layer;       is the synaptic weight between a neuron h1 in the first hidden layer and a neuron h2 

in the second hidden layer; and        is the synaptic weight between a neuron h2 in the second 

hidden layer and a neuron yi in the output layer. Here,         and      are the bias vectors of 

the first hidden layer, the second hidden layer and the output layer, respectively. 
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Figure 7 Fuzzy-neural network structure 

 

In the proposed reconfigurable fuzzy-neural structure, the sigmoid activation function g1(.) and 

g2(.) are defined by the quasi-sigmoid transfer characteristics of the universal fuzzy flip-flop as 

delineated in the fuzzy characteristic Equation (2). The output activation function g0 in the 

feedforward neural network is a linear transfer function. The UFFF was also incorporated in the 

neurons of the output layer to emulate a linear transfer function. Consequently, the neurons in the 
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reconfigurable fuzzy-neural structure use the same building block of neurons with UFFF based 

transfer function for hardware implementation. The linear transfer function can be implemented 

by reconfiguring the UFFF  in JK-mode where X=1, Y=0, K=1, and Q=0 and as seen in Figure 6. 

The proposed reconfigurable fuzzy-neural structure demonstrates the learning ability to perform 

nonlinear input-output mapping for function approximation. 

 

3.1 Experiments on Fuzzy-Neural based Function Approximation 

Two functions y1(x) and y2(x1, x2) are considered to examine the performance of the proposed 

reconfigurable fuzzy-neural structure when approximating complex nonlinear input functions 

[13]. The first complex function is represented by y1(x) = [sin(4x)cos(20x)/2.5]+ 0.5. Using this 

function, a large number of data points (1000 data points) were generated. A second nonlinear 

complex function is represented by y2(x1, x2) = (1+ x1
-2 + x2

-1.5)2 where 1≤ (x1, x2) ≤5. Our 

experiment chose a sparse dataset (50 data points) identical to the data points used by other 

researchers for similar applications, providing a baseline for comparing the efficacy of the 

proposed reconfigurable fuzzy-neural network with previously published results [15]-[16]. In the 

case of the first nonlinear complex function y1(x), the performance of the proposed 

reconfigurable fuzzy-neural network was compared with the feedforward neural network using 

the hyperbolic tangent sigmoid activation function (tansig) which yielded the best performance. 

These two datasets show learning ability when the data points are large and when the data points 

are sparse. Furthermore, since the proposed UFFF can be reconfigured to a fuzzy SR flip-flop, 

fuzzy D flip-flop, fuzzy JK flip-flop or fuzzy T flip-flop, the performance of function 

approximation in each of these modes was further studied.  

The data points and the corresponding values of y1(x) were sampled and evaluated when 

approximating the function y1(x) using the multilayer neural network. Pairs of data points are 

used to train the multilayer neural network using the Levenberg-Marquardt algorithm with a 

maximum of 120 epochs. In our experiment, each hidden layer had 20 neurons and each neuron 

in the first and second hidden layers had a tansig activation function. The neurons in the output 

layer had a linear transfer function. The initial weights were randomly assigned small values. 
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The approximated function generated by the multilayer neural network and the proposed 

reconfigurable fuzzy-neural structure for each mode of the UFFF are shown in Figure 8. The 

graphs show that the function approximation of the fuzzy-neural structure for each mode closely 

matched the performance of the feedforward neural network. The mean squared error (MSE) was 

calculated for all five cases representing the fuzzy-neural structure, based on the four modes of 

the reconfigurable universal flip-flop and the multilayer neural network with tansig activation 

function in the hidden layers. These results are shown in Figure 9. The average MSE values were 

obtained after running the experiment 150 times. The best approximation of the function y1(x) 

was obtained when the UFFF was configured in the fuzzy T flip-flop mode. The results are 

comparable to those obtained with the multilayer neural network using the tansig activation 

function.  

 
Figure 8 Approximated function using the reconfigurable universal fuzzy-neural structure 
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In the first hidden layer, a subset of neurons extracts the local features of the nonlinear function 

by partitioning the input space into regions. The remaining neurons in the first layer learn the 

characteristics of these individual regions. In the second hidden layer, each neuron learns the 

global features of each individual region in the first layer and is combined to generate the 

approximated function at the output. Higher accuracy is obtained by increasing the number of 

neurons in the hidden layers. 

 
Figure 9 Performance of the reconfigurable universal fuzzy-neural structure 

 

Next the function y2(x1, x2) was approximated with a sparse dataset of only 50 data points, as 

used in similar experiments by other researchers [15]-[16]. The UFFF in the fuzzy-neural 

structure was reconfigured in the fuzzy T flip-flop mode to obtain the best performance. The 

tests were performed 30,000 times to be consistent with the experimental design of previously 

published work. Table 1 compares the results of MSE obtained by the proposed fuzzy-neural 

structure when the universal flip-flop is configured in the fuzzy T flip-flop mode with the results 

obtained by Scherer [15] and Sugeno et al. [16]. The results show that even with the sparse 

dataset, the reconfigurable neuro-fuzzy structure has good learning ability and performed better 
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as a function approximator compared with the recently proposed relational neuro-fuzzy system 

[15] and the results reported in [16]. 

Table 1 Performance of sparse data experiment 

Method Testing MSE 

Qualitative Modeling by Sugeno et al. [16] 0.2810 

Neuro-Fuzzy Relational Systems by Scherer [15] 0.2730 

Proposed T-mode of UFFF based Neural Network [13] 0.2672 
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4 UFFF Based Fuzzy State Machine 

A fuzzy Moore state machine approach was proposed using fuzzy JK flip-flop [8]-[9]. The 

proposed structure consists of combinational processing module (logic processor) before the JK 

flip-flop.  The structure was considered as an embedded agent in the framework of granular 

computing. The logic processor optimizes the inputs of the flip-flop by adjusting the network 

connections so that a specific performance index is minimized. In the following experiment, the 

proposed UFFF was incorporated into a such fuzzy-neural state machine structure as shown in 

Figure 10. 

 

V
W

 

Figure 10 Reconfigurable universal fuzzy-neural state machine structure in learning mode 

 

4.1 Experiment on UFFF Based Fuzzy State Machine 

In this experiment, the reconfigurable universal fuzzy-neural state machine structure based on 

the algorithm discussed in [8] and [9] was applied to learn the input vector [0 0; 0 1; 1 1; 1 0; 0 0; 

1 0; 1 1; 0 1]  and the corresponding outputs = [0; 0; 0; 0; 1; 1; 1; 1]. Here, N is the number of 

elements to be trained; it is 8 in this example. There are two nodes of hidden layer and two nodes 

of the output layer in the logic processor. The performance index T to be minimized is a standard 

sum of squared errors: T (W, V)= S[target(k+1) – Q+ (k)]2; where W and V are the arrays of the 



15 

 

connections (weights) of the OR and AND neurons, respectively, and k = 1, 2, …, N. Figure 11 

shows graphs of the performance index versus successive learning epochs for different modes of 

the UFFF. Table 2 lists the mean square errors (MSE) for this experiment using the proposed 

reconfigurable universal fuzzy-neural state machine in different modes. The results show 

significant performance and learning ability for the system for different UFFF modes. This 

experiment demonstrates that the fuzzy state machine can be implemented using the UFFF. 

Moreover, this UFFF based fuzzy state machine can form a reconfigurable agent that has been 

learned rather than being designed and can be embedded in the framework of granular 

computing. Based on the experimental results, the performance of the UFFF configured in the 

fuzzy T flip-flop mode performed best. 
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Figure 11 Performance index versus successive learning epochs 



16 

 

 

Table 2 MSE for reconfigurable universal fuzzy-neural state machine 

UFFF mode Minimum Median Mean STD 

SR 7.2040e-010 6.2095e-008 6.5833e-003 4.3750e-002 

D 1.3968e-012 6.6698e-011 2.9425e-002 1.6824e-001 

JK 0 1.0544e-007 2.0931e-003 8.5479e-003 

T 0 1.2328e-013 1.6874e-007 1.6805e-006 
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5 Conclusion 

The design of a reconfigurable universal fuzzy flip-flop is proposed to improve existing designs 

that have primarily focused on individual fuzzy flip-flops such as fuzzy JK, D or T flip-flops. 

The functionality of the reconfigurable UFFF is extended to produce a myriad of responses to 

optimize the performance for specific applications. It can be reconfigured to operate as a fuzzy 

SR flip-flop, fuzzy JK flip-flop, fuzzy D flip-flop or fuzzy T flip-flop. In this research, the 

reconfigurable UFFF was integrated in two applications. First, the UFFF was integrated in the 

hidden layer and the output layer of a multilayer neural network suitable for embedded hardware 

implementation. The sigmoid activation function of the neurons in the hidden layers was 

replaced by the quasi-sigmoid transfer characteristics of the UFFF. The activation function of the 

output layer was replicated by reconfiguring the UFFF to generate a saturating linear transfer 

function. The learning ability of the resulting reconfigurable fuzzy-neural structure was 

demonstrated by a non-linear function approximation application. The UFFF was configured in 

each of the four modes by selecting different values for the fuzzy inputs. The learning ability of 

the proposed reconfigurable fuzzy-neural structure was studied when (a) the available data points 

were large and (b) when the data points were sparse. The mean square error obtained by using 

two nonlinear complex functions shows that the fuzzy-neural structure has very good learning 

ability, as demonstrated in the function approximator application. In another application, the 

UFFF was integrated in a fuzzy-neural state machine structure and reconfigured in different 

operating modes. Experimental results demonstrate the ability of the embedded UFFF to learn 

and predict the next state and output of the Moore state machine with high accuracy. 
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Appendix A: List of selected triangular norms and conorms  

 

Table 3 Representative t-norms and s-norms [12] 

Norm t-norm ( a  T  b )  s-norm (a  S  b) 

Standard (min-max) min(a,b) max(a,b) 

Algebraic a b  a + b - a b  

Drastic 
a  when b = 1 ,  
b  when a = 1 ,  
0 otherwise 

a  when b = 0 ,  
b  when a = 0 ,  
1 otherwise 

Łukasiewicz max (0, a+b-1) min (1, a+b) 
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Appendix B: The UFFF characteristics using Dombi norms 
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Figure 12 SR-mode of the universal fuzzy flip-flop characteristics using Dombi norms 
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Figure 13 D-mode of the universal fuzzy flip-flop characteristics using Dombi norms 
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Figure 14 T-mode of the universal fuzzy flip-flop characteristics using Dombi norms 
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Figure 15 JK-mode of the universal fuzzy flip-flop characteristics using Dombi norms 
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Appendix C: The UFFF characteristics using Yager norms 
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Figure 16 SR-mode of the universal fuzzy flip-flop characteristics using Yager norms 
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Figure 17 D-mode of the universal fuzzy flip-flop characteristics using Yager norms 
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Figure 18 T-mode of the universal fuzzy flip-flop characteristics using Yager norms 
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Figure 19 JK-mode of the universal fuzzy flip-flop characteristics using Yager norms  
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